Ir arriba
Información del artículo

A survey of artificial intelligence strategies for automatic detection of sexually explicit videos

J. Cifuentes, A.L. Sandoval Orozco, L.J. García Villalba

Multimedia Tools and Applications Vol. 81, nº. 3, pp. 3205 - 3222

Resumen:

Digital forensics and analysis have emerged as a discipline to fight against cyber and computer-assisted crime. In particular, taking into account the increasing of unconstrained pornographic content over Internet and the spreading cases of Child Sex Abuse material distribution, there is a growing need of efficient computational tools to automatically detect or/and block pornographic videos. The primary objective of this study is to review the different strategies available in the literature for pornography detection in videos and identify research gaps. This survey shows that deep learning based techniques detect videos with sexually explicit content more accurately compared with other conventional detection strategies. The accuracy of the strategies reported in this work, is found to be dependent on features extraction techniques, architecture, and learning algorithms. Finally, further research areas in pornographic video detection are outlined.


Palabras Clave: Sexually explicit content detection · Video classification · Digital forensics · Deep learning · Motion features · Visual information analysis


Índice de impacto JCR y cuartil WoS: 3,600 - Q2 (2022); 3,000 - Q2 (2023)

Referencia DOI: DOI icon https://doi.org/10.1007/s11042-021-10628-2

Publicado en papel: Enero 2022.

Publicado on-line: Marzo 2021.



Cita:
J. Cifuentes, A.L. Sandoval Orozco, L.J. García Villalba, A survey of artificial intelligence strategies for automatic detection of sexually explicit videos. Multimedia Tools and Applications. Vol. 81, nº. 3, pp. 3205 - 3222, Enero 2022. [Online: Marzo 2021]


    Líneas de investigación:
  • Análisis de datos

pdf Previsualizar
pdf Solicitar el artículo completo a los autores